The nature of organic matter in samples from the carbonaceous asteroid Bennu

Daniel P. Glavin¹, Jason P. Dworkin¹, Conel M. O'D. Alexander², José C. Aponte¹, Allison A. Baczynski³, Jessica J. Barnes⁴, Hans A. Bechtel⁵, Eve L. Berger⁶, Aaron S. Burton⁷, Paola Caselli⁸, Angela H. Chung^{1,9,10}, Simon J. Clemett^{6,11}, George D. Cody², Gerardo Dominguez¹², Jamie E. Elsila¹, Kendra K. Farnsworth^{1,10,13}, Dionysis I. Foustoukos², Katherine H. Freeman³, Yoshihiro Furukawa¹⁴, Zack Gainsforth¹⁵, Heather V. Graham¹, Tommaso Grassi⁸, Barbara Michela Giuliano⁸, Victoria E. Hamilton¹⁶, Pierre Haenecour⁴, Philipp R. Heck^{17,18}, Amy E. Hofmann¹⁹, Christopher H. House³, Yongsong Huang²⁰, Hannah H. Kaplan¹, Lindsay P. Keller⁶, Bumsoo Kim²⁰, Toshiki Koga²¹, Michael Liss^{22,23}, Hannah L. McLain^{1,9,10}, Matthew A. Marcus⁵, Mila Matney³, Timothy J. McCoy²⁴, Ophélie M. McIntosh³, Angel Mojarro^{1,25}, Hiroshi Naraoka²⁶, Ann N. Nguyen⁵, Michel Nuevo²⁷, Joseph A. Nuth III¹, Yasuhiro Oba²⁸, Eric T. Parker¹, Tanya Peretyazhko^{6,29}, Scott A. Sandford²⁷, Ewerton Santos²⁰, Philippe Schmitt-Kopplin^{8,22,23}, Frederic Seguin^{1,9,10}, Danielle N. Simkus^{1,9,10}, Anique Shahid^{8,30}, Yoshinori Takano^{21,31}, Kathie L. Thomas-Keprta^{6,32}, Havishk Tripathi^{1,33}, Gabriella Weiss^{1,13}, Yuke Zheng^{17,18}, Nicole G. Lunning⁶, Kevin Righter³⁴, Harold C. Connolly, Jr. ^{4,35,36}, and Dante S. Lauretta⁴.

¹NASA Goddard Space Flight Center (GSFC), Greenbelt, MD, USA; ²Carnegie Institution for Science, Washington, DC, USA; ³Pennsylvania State University, University Park, PA, USA; ⁴University of Arizona, Tucson, AZ, USA; ⁵Lawrence Berkeley National Laboratory, Berkeley, CA, USA; ⁶NASA Johnson Space Center, Houston, TX, USA; ⁷NASA Headquarters, Washington, DC, USA; 8Max Planck Institute for Extraterrestrial Physics, Garching, Germany; 9Catholic University of America, Washington, DC, USA; ¹⁰Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, MD, USA; 11ERC, Inc., JETS/Jacobs, Houston, TX, USA; 12California State University San Marcos, San Marcos CA, USA; ¹³University of Maryland Baltimore County, Baltimore, MD, USA; ¹⁴Tohoku University, Sendai, Japan; ¹⁵University of California, Berkeley, CA, USA; ¹⁶Southwest Research Institute, Boulder, CO, USA; ¹⁷Field Museum of Natural History, Chicago, IL, USA; ¹⁸University of Chicago, Chicago, IL, USA; ¹⁹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; ²⁰Brown University, Providence, RI, USA; ²¹JAMSTEC, Natsushima, Yokosuka, Kanagawa, Japan; ²²Technical University Munich, Freising, Germany; ²³Helmholtz Munich, Neuherberg, Germany; ²⁴Smithsonian Institution, Washington, DC, USA; ²⁵Oak Ridge Associated Universities, Oak Ridge, TN, USA; ²⁶Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan; ²⁷NASA Ames Research Center, Moffett Field, CA, USA; ²⁸Hokkaido University, Kita-ku, Sapporo, Japan; ²⁹JETS/Jacobs, NASA Johnson Space Center, Houston, TX, USA; ³⁰Technische Universität München, Muenchen, Germany; ³¹Keio University, Kakuganji, Tsuruoka, Yamagata, Japan; ³²Barrios, JETS/Jacobs, Houston, TX, USA; ³³Southeastern Universities Research Association, Washington, DC, USA; ³⁴University of Rochester, Rochester, NY, USA; ³⁵Rowan University, Glassboro, NJ, USA; ³⁶American Museum of Natural History, New York, NY, USA.

The study of organic matter in astromaterials reveals clues about early solar system chemistry and the origin of molecules important to life [1], but terrestrial exposure complicates interpretation. Samples returned from asteroid Bennu by the OSIRIS-REx mission [2,3] enable us to study pristine carbonaceous astromaterials with geological context and without uncontrolled exposure to Earth's biosphere [3]. Aggregate samples from Bennu are volatile-rich, with elevated abundances of carbon, nitrogen [3], and ammonia compared to samples from Ryugu [4,5] and most meteorites [6,7]. Deuterium and nitrogen-15 isotopic enrichments indicate that some of the organic compounds in Bennu (or their precursors) formed in a cold environment such as a giant molecular cloud or the outer protoplanetary disk. We identified amino acids (including 14 of the 20 standard amino acids used in terrestrial biology), amines, formaldehyde, carboxylic acids, polycyclic aromatic hydrocarbons, and N-heterocycles (including all 5 nucleobases found in DNA and RNA), along with ~10,000 N-bearing chemical species. All chiral and unbound amino acids were racemic or nearly racemic within measurement uncertainties, indicating an extraterrestrial origin. The distribution of amino acids and other soluble organics suggests that they were formed and altered by chemical reactions during low-temperature aqueous processing on the parent body, in NH₃-rich fluids. Volatile-rich asteroids like Bennu could be the remnants of icy bodies from the outer solar system and a source of prebiotic molecules available for the emergence of life.

References: [1] Glavin, D. P. et al. 2018. In: *Primitive Meteorites and Asteroids* (pp. 205–271), Elsevier. [2] Lauretta, D. S. et al. 2017. Space Science Reviews 212, 925–984. [3] Lauretta, D. S. and Connolly, Jr. H. C. et al. 2024. Meteoritics & Planetary Science 59, 2453–2486. [4] Naraoka, H. et al. 2023. Science 379, eabn9033. [5] Yoshimura, T. et al. 2023. Nature Communications 14, 5284. [6] Pizzarello, S. and Williams, L. B. 2012. The Astrophysics Journal 749, 161. [7] Alexander, C. M. O'D. et al. 2012. Science 337, 721.

Acknowledgements: We are grateful to the entire OSIRIS-REx Team for making the return of samples from asteroid Bennu possible. We thank the Astromaterials Acquisition and Curation Office, part of the Astromaterials Research and Exploration Science (ARES) Division at NASA Johnson Space Center, for their efforts in SRC recovery, preliminary examination, and long-term curation. This material is based upon work supported by NASA Award NNH09ZDA007O and under Contract NNM10AA11C issued through the New Frontiers Program.