Oxygen and carbon isotope compositions of Ryugu's carbonates: Constraints on the conditions of aqueous alteration

Wataru Fujiya¹, Noriyuki Kawasaki², Kazuhide Nagashima³, Conel M. O'D. Alexander⁴, Hisayoshi Yurimoto², The

Hayabusa2-initial-analysis chemistry team, and The Hayabusa2-initial-analysis core.

¹Ibaraki University, ²Hokkaido University, ³University of Hawai'i at Mānoa, ⁴Carnegie Institution for Science

The Hayabusa2 spacecraft collected CI-chondrite-like materials from the near-Earth asteroid 162173 Ryugu [1]. Ryugu materials are mainly composed of secondary minerals that formed by aqueous alteration, e.g., phyllosilicates, carbonates, sulfides, and oxides. In this study, we performed *in-situ* O and C isotope measurements of calcite (CaCO₃) and dolomite (CaMg(CO₃)₂) in Ryugu samples A0058 and C0002 as well as the Ivuna meteorite to investigate the conditions of the aqueous alteration. We used secondary ion mass spectrometry (SIMS; CAMECA ims-1280HR) at Hokkaido University with a suite of dolomite-ankerite standards [2] and a calcite standard "UWC3" [3].

The δ^{18} O values of the calcites (24‰ to 46‰) in C0002 and Ivuna show a larger variation than those of the dolomites in C0002, A0058, and Ivuna (26‰ to 31‰) (Fig. 1). The average Δ^{17} O value of the C0002 and Ivuna calcites is $1.37 \pm 0.40\%$ (2SE). The Δ^{17} O values of the C0002, A0058, and Ivuna dolomites are systematically lower than those of the calcites, and the average Δ^{17} O value of the dolomites (0.26 ± 0.23‰, 2SE) is closer to the whole-rock values of two Ryugu samples [4] (0.30‰ and 0.58‰). Like the δ^{18} O values, the dolomites in A0058, C0002, and Ivuna have a relatively narrow range of δ^{13} C values from 67‰ to 75‰ (Fig. 2). On the other hand, the δ^{13} C values of the calcites in C0002 and Ivuna are highly heterogeneous, ranging from 65‰ to 108‰, and they are commonly higher than those of the Ryugu and Ivuna dolomites.

If, when the carbonates precipitated they were in O and C isotope equilibrium with the aqueous fluid, their O and C isotope compositions would have been determined by the mass dependent equilibrium isotopic fractionation, which depends on temperature, between carbonates and water for O, and that between carbonates and dissolved CO_3^{2-} (and other dissolved C-bearing chemical species) for C [5]. Thus, the O and C isotope compositions of carbonates would reflect those of water and CO_3^{2-} as well as their formation temperatures. The δ^{18} O variation of ~22‰ observed in the Ryugu calcites (Fig. 1) corresponds to formation temperatures that varied from 0 °C to 150 °C. However, the lack of a correlation between δ^{18} O and δ^{13} C values implies that variable formation temperatures alone cannot explain the observed δ^{18} O and δ^{13} C variations (Fig. 2). Rather it seems likely that both the δ^{18} O value of water and the δ^{13} C value of CO_3^{2-} varied temporally. Because the Δ^{17} O values of the fluids likely decreased as water-rock interaction progressed [6], the calcites with systematically higher Δ^{17} O values should have formed from less "evolved" fluids and likely crystallized earlier than the dolomites (Fig. 1).

It seems likely that the temporal variation in the δ^{13} C values of the C reservoirs and in their chemical speciation occurred due to a change of O fugacity (fO_2). Oxygen fugacity varied along with the production of H₂ via the oxidation of Fe in metal and silicates by H₂O and the subsequent escape of H₂ from the system. To see how the δ^{13} C values of carbonates will change with varying fO_2 , we consider a rather simple model, where gaseous CO₂ and CO and carbonates (and dissolved CO₂, HCO₃⁻, and CO₃²⁻) are in C isotopic equilibrium and the CO₂/CO ratio increases with increasing fO_2 . At first, the CO₂/CO ratio may have been characterized by that of the accreted ices, which may be around unity or higher as observed in cometary ices [7]. We assume that the δ^{13} C value of the bulk gas (CO₂+CO), δ^{13} C_{bulk}, is constant regardless of the CO₂/CO ratio. Because the C isotopic fractionation factor between CO₂ and CO is positive at any temperature, e.g., 93‰ at 0 °C [8], both the δ^{13} C values of CO₂ and CO will decrease monotonically with increasing fO_2 to keep δ^{13} C bulk constant, and the δ^{13} C values of carbonates will also decrease (Fig. 2). In this context, the dolomites with lower δ^{13} C values likely formed at higher fO_2 and/or temperature than the calcites. This, combined with the O isotope signatures of the carbonates, implies that the calcites formed during prograde alteration over wide ranges of fO_2 and temperature, whereas the dolomites formed later from peak temperature to retrograde cooling when the aqueous fluids and silicates approached O isotope equilibrium [9].

References:

[1] Yokoyama T. et al. Science, 10.1126/science.abn7850 (2022) [2] Śliwiński M. G. et al. Geostand. Geoanal. Res. 40, 173-184 (2016). [3] Kozdon R. et al. Chem. Geol. 258, 327-337 (2009). [4] Tang H. et al. Sci. Adv., submitted. [5] Alexander, C. M. O'D. et al. Meteorit. Planet. Sci. 50, 810-833 (2015). [6] Clayton R. N. & Mayeda T. K. Earth Planet. Sci. Lett. 67, 151-161 (1984). [7] Ootsubo T. et al. Astrophys. J. 752, 15 (2012). [8] Richet P. et al. Ann. Rev. Earth Planet. Sci. 5, 65-110 (1977). [9] Nagashima et al. this meeting.

Figure 1. Oxygen isotope compositions of the calcite and dolomite grains in Ryugu and Ivuna samples.

Figure 2. Comparison between C and O isotope compositions of the calcite and dolomite grains in Ryugu and Ivuna samples. A putative evolutionary trend of δ^{18} O and δ^{13} C values is shown by the green arrow.

The Hayabusa2-initial-analysis chemistry team: T. Yokoyama, K. Nagashima, Y. Abe, J. Aléon, C.M.O'D. Alexander, S. Amari, Y. Amelin, K. Bajo, M. Bizzarro, A. Bouvier, R. W. Carlson, M. Chaussidon, B.-G. Choi, N. Dauphas, A.M. Davis, T. Di Rocco, W. Fujiya, R. Fukai, I. Gautam, M.K. Haba, Y. Hibiya, H. Hidaka, H. Homma, P. Hoppe, G.R. Huss, K. Ichida, T. Iizuka, T.R. Ireland, A. Ishikawa, M. Ito, S. Itoh, N. Kawasaki, N.T. Kita, K. Kitajima, T. Kleine, S. Komatani, A.N. Krot, M.-C. Liu, Yuki Masuda, K.D. McKeegan, M. Morita, K. Motomura, F. Moynier, I. Nakai, A. Nguyen, L. Nittler, M. Onose, A. Pack, C. Park, L. Piani, L. Qin, S.S. Russell, N. Sakamoto, M. Schönbächler, L. Tafla, H. Tang, K. Terada, Y. Terada, T. Usui, S. Wada, M. Wadhwa, R.J. Walker, K. Yamashita, Q.-Z. Yin, S. Yoneda, E.D. Young, H. Yui, A.-C. Zhang, H. Yurimoto.

The Hayabusa2-initial-analysis core: S. Tachibana, T. Nakamura, H. Naraoka, T. Noguchi, R. Okazaki, K. Sakamoto, H. Yabuta, H. Yurimoto, Y. Tsuda, S. Watanabe.