Neutron Capture ³⁶Cl in Ryugu Samples

Kunihiko Nishiizumi¹, Marc W. Caffee², Jozef Masarik³, Keisuke Nagao⁴, Ryuji Okazaki⁵, Hisayoshi Yurimoto⁶, Tomoki Nakamura⁷ Takaaki Noguchi⁸, Hiroshi Naraoka⁵, Hikaru Yabuta⁹, Kanako Sakamoto¹⁰, Shogo Tachibana^{11, 12}, Sei-ichiro Watanabe^{10, 12}, Yuichi Tsuda¹⁰

¹Space Sci. Lab., Univ. of California, Berkeley, CA 94720-7450, USA., ²Dept. of Phys. & Astro., Purdue Univ., West Lafayette, IN 47907-2036, USA., ³Comenius Univ., Batislava, Slovakia, ⁴KOPRI, Incheon 21990, Korea, ⁵Kyushu Univ., Fukuoka 819-0395, Japan, ⁶Hokkaido Univ., ⁷Tohoku Univ., ⁸Kyoto Univ., ⁹Hiroshima Univ., ¹⁰ISAS/JAXA, ¹¹Univ. of Tokyo, ¹²Nagoya Univ.

Hayabusa2 arrived at the C-type asteroid 162173 Ryugu in Jun. 2018, and successfully collected surface samples from two sampling sites, returning ~5.4 g of samples to Earth on Dec. 6, 2020. The surface samples stored in Chamber A were collected by the 1st touchdown (TD) on Ryugu's surface on Feb. 21, 2019. A crater (diameter of ~14 m) on Ryugu's surface was made using a collision device - denoted "Small Carry-on Impactor (SCI)" - on Apr. 5, 2019 [1]. The samples in Chamber C were collected proximal to this artificial crater and are possibly ejecta from the north side of the crater by the 2nd TD on Jul. 11, 2019 [2].

Our studies are based on the measurement of those nuclides produced in asteroidal surface materials by cosmic rays - both solar (SCR) and galactic cosmic rays (GCR). Cosmic-ray-produced (cosmogenic) nuclides are used to determine the duration and nature of the exposure of materials to energetic particles. Our goals are to understand both the fundamental processes on the asteroidal surface and the evolutionary history of its surface materials. With this information we hope to better understand asteroid-meteoroid evolutionary dynamics. For Hayabusa2 samples, there are several specific questions we aim to address: (1) are the Chamber C samples, collected during the 2nd TD ejecta deposits from the artificial crater, (2) if so, what is the original depth of each recovered sample in the Ryugu regolith, and (3) what is the surface exposure time, mixing rate, and erosion/escape rate of Ryugu's surface? To answer these questions, we were allocated and received 2 particles from Chamber A (A0105-19 and -20) and 6 particles from Chamber C (C0106-09, -10, -11, -12, C0002-V01, and -V02) for measurements of cosmogenic radionuclides and noble gases. Each sample is several hundred µm in size.

As a part of initial analysis of Ryugu we have measured cosmogenic ¹⁰Be ($t_{1/2} = 1.36 \times 10^6 \text{ yr}$) [3], ²⁶Al (7.05 x 10⁵ yr) [4], and stable noble gases [5] in above samples. The Table 1 summarizes ²⁶Al, ¹⁰Be, and cosmogenic ²¹Ne concentrations in each sample. Based on those measurements, we found that sampling depth of A0105-19 was 10-15 g/cm² and A0105-20 was ~5 g/cm². The exposure ages of both A0105 samples were 6.4-7.5 Myr. The chamber A samples were exposed to cosmic rays at Ryugu's near surface (~10 cm), as expected, and had similar exposure ages of ~7 Myr. On the other hand, the four C0106 particles were exposed at depth of ~50, 110, 130, and 145 g/cm² respectively and had exposure ages of ~1.6, 3.2, 4.5, and 5.8 Myr respectively. Our results indicate that Chamber C samples are mixture of particles ejected from various depths on Ryugu by the SCI impact. It is noteworthy that all four particles had different exposure ages on Ryugu. Exposure depths of each sample are also shown in Table 1.

To further study of the exposure condition of Ryugu surface materials, we analyzed cosmogenic 36 Cl (3.01 x 10⁵ yr). After dissolution of each sample with a few drops of HF-HNO₃ mixture, Cl was separated as AgCl prior to Be and Al separation [3, 4]. After chemically purified AgCl, the concentration of 36 Cl was measured by accelerator mass spectrometry (AMS) at Purdue University [6], using a 36 Cl AMS standard [7] for normalization. The concentrations of 36 Cl (dpm/kg) in each Ryugu sample are shown in Table 1 along with that of Nogoya CM2 chondrite for validation. The 36 Cl concentrations in all Ryugu samples are more than an order of magnitude higher than that of Nogoya. The dominant production pathway for 10 Be and 26 Al is by high-energy neutron spallation reactions. Although 36 Cl can be produced by both thermal neutron capture reaction, 35 Cl (n, γ) 36 Cl, and high-energy neutron spallation on K, Ca, and Fe, the thermal neutron production of 36 Cl is dominant owing to the high H and Cl concentrations in Ryugu. Using the MCNP Code System [8], we calculated GCR production rate of 36 Cl by spallation reactions for a body having a 2 π geometry with Ryugu's chemical compositions [9]. The obtained production rates are 5.4 36 Cl atom/min/kg at surface to 3.3 at ~150 g/cm². The thermal neutron production of 36 Cl is calculated by subtracting spallation contribution from measured value and normalized to Cl concentrations in Ryugu are extraordinarily high. Among carbonaceous chondrites, only the CI chondrite Orgueil is higher, having 160 ± 1 dpm/kg (unpublished), assuming exposure in a 4π geometry. This corresponds to 220 ± 3 dpm 36 Cl /g Cl assuming 700 ppm Cl in Orgueil.

Assuming a chemical compositions for each particle the same as the bulk analysis of Ryugu [9], the thermal neutron produced ³⁶Cl in Ryugu is maximum at slightly below 100 g/cm² or between depth of C0106-10 and -11. The depth of maximum production for the low-energy neutron capture reaction on Ryugu is shifted toward surface compared to that of the Moon (~150

g/cm²). This occurs because Ryugu contains high H (0.94 %) and C (4.6 %) [9] which are effective moderators of neutrons. Since we don't have exact Cl concentration in each particle, it is hard to compare observed ³⁶Cl concentration to model calculation such as MCNP code system at present. Although we are planning measurements of thermal neutron capture ⁴¹Ca ($t_{1/2} = 0.10$ Myr) in Ryugu, it requires larger sample size than this work because low thermal neutron capture cross section on ⁴⁰Ca compared to that of ³⁵Cl (0.43 b vs. 43.6 b) and lower AMS sensitivity of ⁴¹Ca measurements.

Sample	Mass (µg)	Depth ^a (g/cm ²)	³⁶ Cl ^b (dpm/kg)	³⁶ Cl _{th} ^c (dpm/g Cl)	²⁶ Al ^d (dpm/kg)	¹⁰ Be ^e (dpm/kg)	²¹ Nec ^f (10 ⁻⁹ cm ³ STP/g)								
								A0105-19	242.9	5	31.1±2.3	33±3	27.1±1.1	12.76±0.37	7.55
								A0105-20	206.1	10-15	28.9±1.9	30±2	33.3±1.8	12.75±0.29	7.75
C0106-09	122.8	50	72.0±6.2	86 ± 8	23.3±1.4	7.10 ± 0.30	1.79								
C0106-10	154.3	110	116.5±6.9	144±9	25.7±1.3	7.48 ± 0.26	3.58								
C0106-11	189.8	130	23.4±2.5	26±3	25.5±1.2	7.21±0.43	5.07								
C0106-12	959.8	145	24.2 ± 0.9	27±1	23.8±0.7	7.36±0.33	6.54								
C0002-V01	45.3	125	30.1±4.3	34±6	24.9±1.9	8.29±0.95	-								
C0002-V02	11.1	125	11±13	-	21.9±5.1	7.87 ± 1.80	-								
Nogoya CM2	459.4	-	2.2 ± 0.5	-	-	2.09±0.13	-								
Nogoya CM2	343.7	-	2.2 ± 0.6	-	$7.7{\pm}0.5$	2.12 ± 0.09	-								
Nogoya CM2	204.9	-	$0.6{\pm}1.0$	-	9.1±0.6	2.00±0.13	-								

^aEstimated depth based on ¹⁰Be and ²⁶Al [4]; ^bThis work; ^cAfter subtraction of spallation component (see text); ^d[4]; ^e[3]; ^f[5].

Acknowledgments: We thank Hayabusa2 project and initial analysis team, especially Hayabusa2 curation members. Z. Nett and K. C. Welten helped a part of laboratory works. Nogoya was obtained from Field Museum of Natural History. This work was supported by NASA's LARS program.

References

[1] Arakawa M. et al. 2020. Science 368, 67-71. [2] Tsuda Y. et al. 2020. Acta Astronautica 171, 42-54. [3] Nishiizumi K. et al. 2021. Hayabusa Symposium 2021 S3-1. [4] Nishiizumi K. et al. 2022. Lunar Planet. Sci. 53, #1777. [5] Nagao K. et al. 2022. Meteor. Planet. Sci. 57, A337 #6320. [6] Sharma P. et al. 2000. Nucl. Instrum. Methods Phys. Res. B 172, 112-123. [7] Sharma P. et al. 1990. Nucl. Instrum. Methods Phys. Res. B52, 410-415. [8] Masarik J. and Reedy R. C. 1994. Geochim. Cosmochim. Acta 58, 5307-5317. [9] Yokoyama T. et al. 2022. Science 10.1126/science.abn7850.