The young basalts on the Moon: Pb–Pb isochron dating in Chang'e-5 Basalt CE5C0000YJYX03501GP

Dunyi Liu^{1,3}, Alexander Nemchin^{2,1}, Xiaochao Che¹, Tao Long¹, Chen Wang¹, Marc D. Norman⁴, Katherine H. Joy⁵, Romain Tartese⁵, James Head⁶, Bradley Jolliff⁷, Joshua F. Snape⁵, Clive R. Neal⁸, Martin J. Whitehouse⁹, Carolyn Crow¹⁰, Gretchen Benedix², Fred Jourdan², Zhiqing Yang¹, Chun Yang¹, Jianhui Liu¹, Shiwen Xie¹, Zemin Bao¹, Runlong Fan¹, Dapeng Li³, Zengsheng Li³, Stuart G. Webb⁸

¹Beijing SHRIMPCenter, Institute of Geology, Chinese Academy of Geological Sciences. ²School of Earth and Planetary Sciences, Curtin University. 3Shandong Institute of Geological Sciences, Jinan, Shandong. ⁴Research School of Earth Sciences, The Australian National University. ⁵Department of Earth and Environmental Sciences, The University of Manchester. ⁶Department of Earth, Environmental, and Planetary Sciences, Brown University. ⁷Department of Earth and Planetary Sciences and The McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis. ⁸Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame. ⁹Department of Geosciences, Swedish Museum of Natural History. ¹⁰Department of Geological Sciences, University of Colorado Boulder.

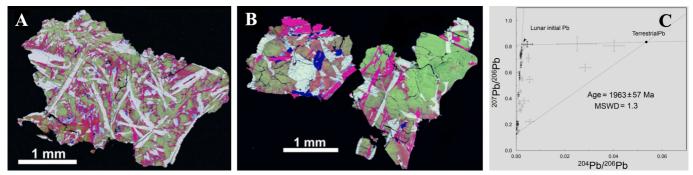


Figure 1. A & B false color energy EDS element maps of the two fragments from CE5C0000YJYX03501GP blue=silica, green=Mg, red=Fe, white=Al, yellow=Ca, pink=Ti, cyan=K. C Pb-Pb isochrons for CE5C0000YJYX03501GP.

China's Chang'e-5 mission collected 1731g lunar samples at 43.1°N, 51.8°W in the northeastern Oceanus Procellarum of the Moon. Basalt fragments is the main lithic type in the lunar soil returned by Chang'e-5 that showed five distinct textural types[1], The two scooped basalt fragments from CE5C0000YJYX03501GP both are equidimensional, approximately 3-4 mm in size and consist of clinopyroxene, plagioclase, olivine, ilmenite, quartz, cristobalite, K-rich glass, barian K-feldspar, troilite and Ca-phosphates, with small amounts of the Zr-rich minerals baddeleyite and zirconolite[Figure 1. A, B]. The pyroxenes and olivines in the two fragments include highly Fe-rich compositions for lunar basalts. and the bulk compositions of both fragments indicate elevated FeO (~22-25 wt.%) and low MgO (~5 wt.%). The mineralogy and bulk compositions of two basalt fragments are consistent with remote sensing data of this region [2]. These 677 ± 3 of ²³⁸U/²⁰⁴Pb ratio (μ -value) for the two fragments imply only a modest (<2%) KREEP component either in their mantle sources or introduced by assimilation during magma ascent [2].

The Pb isotope data were collected using a SHRIMP IIe-MC at Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing. $^{204}Pb^+$, $^{206}Pb^+$, $^{207}Pb^+$ and $^{208}Pb^+$ isotopes were measured simultaneously with multi collectors and the $^{204}Pb/^{206}Pb$, $^{207}Pb/^{206}Pb$ and $^{208}Pb/^{206}Pb$ ratios were calibrated using BCR-2, BHVO-2. Combining all Pb isotope data from Zr-rich minerals, Ca-phosphates, K-rich glass and barian K-feldspar for the two basalt fragments, gives an isochron age of 1963 ± 57 Ma [Figure 1. C]. This age constrains the lunar impact chronology of the inner Solar System and the thermal evolution of the Moon. Studies of other basalt fragments from Chang'e-5 have yielded similar results [3, 4], and showed a relatively low water content [5].

Reference

[1] Li C. et al. 2021. National Science Review. [2] Che X. et al. 2021. Science. [3] Li Q. et al. 2021. Nature. [4] Tian H. et al. 2021. Nature. [5] Hu S. et al. 2021. Nature.