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Introduction: The regolith grains sampled and returned to Earth by the spacecraft Hayabusa from asteroid 25143 Itokawa 

allowed for the second time – after the Apollo missions – the direct study of space weathering effects [1] and confirmed the 

link between ordinary chondrites and the S-type asteroid [2]. The reported space weathering effects are due to both solar wind 

irradiation and impacts of micrometeoroids. They include nanocrystalline and amorphous layers [2-6], melt- and vapor-

deposited layers [3, 5], and shock metamorphic features (e.g., lattice defects) [7]. In this work, we present the results of a study 

on grain RB-QD04-0092. This particle documents the complex dynamic evolution of the asteroid surface by impact gardening. 

Sample and methods: In the context of the 4th International Announcement of Opportunity for Hayabusa sample investigation, 

we have received five Itokawa particles. Currently, we have focused on the investigation of particle RB-QD04-0092, which 

was sliced into five subsamples by focused ion beam (FIB) on a scanning electron microscope (SEM) and then studied by 

analytical transmission electron microscopy (TEM), following the procedure described by [6]. 

Observations and discussion: RB-QD04-0092 is a flat grain (29 x 25 x 8 µm) consisting of enstatite (En75-80) and olivine 

(Fo71-78). Numerous mineral fragments are attached to its surface (Fig. 1). They are mainly made of Mg-rich olivine, troilite, 

and plagioclase.  

TEM reveals that the entire particle possesses a polycrystalline rim (maximum thickness 70 nm) and incipient vesicle/blister 

formation, indicating a moderate solar wind exposure [8]. Contrary to other observations [2], no (sulfur)-iron nanoparticles and 

amorphized rims were found. Solar flare tracks were observed in both enstatite and olivine with a density comparable to 

previously reported data (108 – 109 cm-2; [4, 6]). 

In addition to these features, olivine and enstatite show typical shock effects known for shocked meteorites, that is: (1) screw 

dislocations with Burgers vector [001] in olivine and (2) (100) clinoenstatite lamellae in orthoenstatite. This is the first report 

of clinoenstatite lamellae in Hayabusa-returned samples. Dislocations in olivine occur localized in at least three separate sites, 

suggesting more than just one impact event. We found a maximum length of the [001] dislocations of 2.5-3 µm. Taking the 

estimated dislocation velocity in experimentally shocked olivine [9], their time of propagation and, hence, shock duration can 

be approximated to be of the order of 1.5 ns. This short time indicates that the multiple collisions that RB-QD04-0092 

underwent must have occurred with other tiny particles or fragments in the regolith of Itokawa. Clinoenstatite lamellae are 

relatively short, which is also in agreement with such small-scale grain-grain collisions. However, impact microcraters are 

absent on the surfaces of sites with the aforementioned shock effects.  

Conclusions: The absence of a well-developed amorphous rim containing nanoparticles and the occurrence of at least four 

sites with shock effects and no microcraters indicate that RB-QD04-0092 was involved in active regolith gardening. This 

collisional gardening has the effect of reducing the effective exposure time of regolith grains.  
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