OXYGEN- AND CARBON-ISOTOPE EVOLUTION IN FLUIDS DURING AQUEOUS ALTERATION.

W. Fujiya¹, K. Fukuda², A. Ishida³, and Y. Sano³. ¹Ibaraki University. Bunkyo 2-1-1, Mito, Ibaraki 310-8512, JAPAN. E-mail: wataru.fujiya.sci@vc.ibaraki.ac.jp. ²University of Tokyo. ³Atmosphere and Ocean Research Institute, University of Tokyo.

Introduction: CM chondrites exhibit evidence for aqueous alteration. Carbonates formed during aqueous alteration and recorded O and C isotopic compositions of water and dissolved inorganic C species. Although O and C isotopic compositions of carbonates are highly variable [1-3], much is unknown about the controlling factor(s) of the isotopic variation. In this study, we conducted in-situ O- and C-isotope measurements on calcite grains in the Nogoya CM chondrite in order to investigate O and C isotopic evolution during aqueous alteration.

Experimental: Oxygen- and C-isotope measurements were performed with the NanoSIMS 50 at AORI, UTokyo. ^{16,17,18}O⁻ ions (in O-isotope measurement), or ^{12,13}C⁻, ¹⁸O⁻, ¹²C¹⁴N⁻, and ²⁸Si⁻ ions (in C-isotope measurement) produced by a 20-30 pA Cs⁺ ion beam were detected with a FC and two EMs, or with five EMs, respectively. Typical errors on $\delta^{17,18}$ O and δ^{13} C values were 5.3 ‰ and 6.4 ‰ (2 σ), respectively.

Results and discussion: We found calcite grains with distinct mineralogical characteristics (type I and II grains). Type I grains are likely to have precipitated in pore fluids while type II grains appear to have replaced other minerals. These observations have also been reported by previous studies (e.g., [4]).

Oxygen isotopic compositions are highly different between type I and II grains, but similar within each type ($\delta^{18}O_{SMOW} =$ 35.1 ‰ (type I) and 18.0 ‰ (type II) on average). The average $\Delta^{17}O$ values are -3.0 ‰ (type I) and -5.7 ‰ (type II). These observations suggest that type II calcite formed later than type I calcite, because progressive alteration led to O-isotope exchange between water and anhydrous silicate with lower $\delta^{18}O$ and $\Delta^{17}O$ values than water. In contrast, C isotopic compositions of two types of grains are similar ($\delta^{13}C_{PDB} = 32.5$ ‰ on average), except for one type II grain with $\delta^{13}C$ of 53.8 ‰.

The variation in O and C isotopic compositions cannot be explained by change in formation temperatures [3], or the Rayleigh-type fractionation [2] alone. The δ^{18} O variation must reflect both change in temperatures and O-isotope exchange between water and anhydrous silicate. Temperature-dependent C isotopic fractionation between CO₃²⁻ and gaseous species such as CH₄ may have been compensated by the Rayleigh-type fractionation resulted from escape of the gaseous phases.

References: [1] Grady M. M. et al., 1988. *Geochim. Cosmochim. Acta* 52:2855-2866. [2] Guo W. and Eiler J. M., 2007. *Geochim. Cosmochim. Acta* 71:5565-5575. [3] Alexander C. M. O'D. et al., 2014. *Meteorit. Planet. Sci.* 50:810-833. [4] Lee M. R. et al., 2014. *Geochim. Cosmochim. Acta* 144:126-156.