THE COSMIC-RAY EXPOSURE AGE PROBABILITY DENSITY DISTRIBUTION OF HAYABUSA GRAINS

M. M. M. Meier^{1,2}, C. Alwmark², S. Bajt³, U. Böttger⁴, H. Busemann^{5,6}, W. Fujiya⁷, J. Gilmour⁵, U. Heitmann⁸, P. Hoppe⁷, H.-W. Hübers⁴, F. Marone⁹, U. Ott⁷, S. Pavlov⁴, U. Schade¹⁰, N. Spring⁵, M. Stampanoni⁹, I. Weber⁸. ¹CRPG CNRS-Nancy, France (mmeier@crpg.cnrs-nancy.fr), ²Dept. of Geology, Lund Univ., Sweden, ³Photon Sci., DESY, Hamburg, Germany, ⁴DLR, Planet. Res. Inst., Berlin, Germany, ⁵SEAES, Univ. of Manchester, UK, ⁶Earth Sciences, ETH Zurich, Switzerland, ⁷MPIC Mainz, Germany, ⁸Inst. f. Planetologie, Univ. of Münster, Germany, ⁹Swiss Light Source, PSI, Villigen, Switzerland, ¹⁰Helmholtz-Zentr. Berlin, Germany.

Background: The analysis of He and Ne in individual mineral grains brought back by the JAXA space probe Hayabusa from near-Earth asteroid Itokawa has revealed that these grains all have exposure times to galactic cosmic rays (cosmic-ray exposure = CRE ages) of <8 Ma [1-5]. This is surprisingly short given the expected survival time of Itokawa in the inner solar system (on the order of a few 10 Ma) [6], and the observed crater distribution on Itokawa (at least 75 Ma) [7], suggesting higher exposure ages for grains from that asteroid. Possible explanations include: 1) a high surface erosion rate on the order of ~ 0.1 -1 m per Ma [1]; 2) a relatively recent (<8 Ma) mass-shedding/resurfacing event, either through break-up and re-assembly, partial tidal disruption [3,4] or YORP-induced effects [8]; 3) a local effect, i.e., most of the grains sampled by Hayabusa derive from a nearby boulder or "ridge" on the surrounding surface in "Muses Sea" (where Hayabusa touched down on Itokawa) which was exposed <8 Ma ago by, e.g., a small impact; 4) a coincidence favored by small-number statistics; 5) a combination of different scenarios. Scenarios 1-4 should result in characteristic (although perhaps not unique) shapes of the CRE age probability density distribution. For example, a single event leading to the simultaneous exposure of all grains would result in a single large peak in the probability distribution, while a continuous, constant CRE in a regolith would result in a flat distribution.

Methods & Results: We use published (as well as our own, yet unpublished) data for He, Ne amounts. For grain masses, we either use Synchrotron X-Ray Tomographic Microscopy (SRXTM) at the Swiss Light Source/TOMCAT beam-line of the Paul-Scherrer-Institute in Switzerland for volume determination (and subsequent mass determination via density from #Fo [2]), or volumes determined from available SEM grain images from the Hayabusa grain database, combined with a statistical model linking cross-sectional areas with volumes (calibrated by SRXTM [2,9,10]). We then construct the cosmic-ray exposure age probability density distribution for all Hayabusa grains analyzed for their He, Ne content up to the time of the meeting.

References: [1] Nagao K. et al. 2011. Science 333, 1128-1131. [2] Nagao K. et al., 2013. Abstract #1976. 44th LPSC. [3] Meier M. M. M. et al. 2013, First Hayabusa Symposium. [4] Meier M. M. M. et al. 2014. Abstract #1247, 45th LPSC. [5] Fujiya W. et al. 2014. Abstract #1802, 45th LPSC. [6] Michel P. and Yoshikawa M. 2005. Icarus 179, 291-296. [7] O'Brien M. P. et al. 2009. Icarus 200, 503-513. [8] Connolly H. C. et al. 2014. Abstract #5075. 77th Annual Meteoritical Society Meeting. [9] Meier M. M. M. et al. 2014, Geochimica et Cosmochimica Acta 125, 338-350. [10] Tsuchiyama A. et al. 2014. Meteoritics & Planetary Science 49, 172-187.