MINERALOGY AND CRYSTALLOGRAPHY OF ITOKAWA PARTICLES BY ELECTRON BEAM AND SYNCHROTRON RADIATION X-RAY ANALYSES.

T. Mikouchi¹, M. Komatsu², K. Hagiya³, K. Ohsumi⁴, V. Hoffmann^{5,6}, M. Zolensky⁷, J. Martinez⁷, Y. Terada⁴, N. Yagi⁴, M. Takata⁴, W. Satake¹, Y. Aoyagi¹, A. Takenouchi¹, R. Hochleitner⁸, M. Kaliwoda⁸, Y. Karouji⁹, M. Uesugi⁹, T. Yada⁹, M. Miyamoto¹. ¹University of Tokyo, ²Waseda University, ³University of Hyogo, ⁴JASRI, ⁵University of München, ⁶University of Tübingen, ⁷NASA-JSC, ⁸Mineral. State Collection, München, ⁹JAXA-ISAS. E-mail: mikouchi@eps.s.u-tokyo.ac.jp.

Introduction: Itokawa particles returned by the JAXA Hayabusa spacecraft are providing significant information about the formation and evolution of meteorite parent bodies [e.g., 1]. The preliminary examination (PE) of these particles revealed that their mineral compositions are close to those of equilibrated LL chondrites [e.g., 2]. In this abstract we report mineralogical and crystallographic studies on 4 new and 3 PE particles that were allocated by JAXA as 1st international AO study.

Samples and Methods: At first 3 PE samples were allocated. They are RA-QD02-0036, 0041 and 0049-2. We additionally received 4 new particles (RA-QD02-0179, 0138, 0100, and 0133-01) and made polished sections after being embedded in epoxy. These particles were analyzed by optical microscope, FEG-SEM (Hitachi S-4500) and electron microprobe (JEOL JXA8900L). They were also analyzed by synchrotron radiation (SR) XRD (SPring-8, BL37XU) and Fe-XANES (KEK, PF, BL-4A).

Results: The optical microscopic observation showed that all particles were mostly composed of single crystal except for RA-QD02-0179 (polycrystalline plagioclase). The shock stage was estimated to be S2 for all samples because of the presence of minor undulatory extinction. The SEM-EDS analysis revealed that they are mainly composed of olivine with small amounts of plagioclase. Submicron-sized chromite and Ca phosphate were also found. No pyroxene was present in our samples. Olivine shows a homogeneous composition in each particle, and is Fa₃₀ with 0.4 wt% MnO. Olivine in RA-QD02-0179 is slightly Mg-rich (Fa₂₆). Plagioclase is also homogeneous (An₁₂Or₆, ~0.1 wt% FeO). The SR-XRD analysis gave sharp diffraction spots, suggesting minor shock metamorphism. Olivine gives the following cell dimensions: a=4.77-4.78, b=10.27-10.29, c=6.02 (Å), corresponding to the chemical composition of Fa_{31-32} [3]. This matches the composition obtained by electron microprobe analysis. The cell dimensions obtained for plagioclase are a=8.18, b=12.53, c=7.13 (Å) with α =93.0, β =116.4, γ =90.2 (°). The Fe-XANES analysis of plagioclase suggests the presence of small amounts of Fe³⁺ although longer counting time is required in future analysis.

Discussion and Conclusion: The newly-analyzed particles are all compositionally close to equilibrated LL chondrites. The presence of Fe³⁺ in plagioclase is consistent with formation under a slightly oxidizing environment which is also consistent with LL chondrites. Because the plagioclase crystallite size is larger than 2 μ m, the petrologic type is \geq 5. We did not find any unequilibrated particles as reported in [2]. Thus, this study further confirms that the Itokawa particles belong to equilibrated LL chondrites with minor shock metamorphism.

References: [1] Nagao K. et al. 2011. *Science* 333:1128–1131. [2] Nakamura T. et al. 2011. *Science* 333:1113–1116. [3] Akimoto S. and Fujisawa H. 1968. *Journal of Geophysical Research* 73:1467–1479.