RAMAN MICROSPECTROSCOPY OF HAYABUSA PARTICLES.

U. Böttger¹, C. Alwmark², S. Bajt³, H. Busemann⁴, J.D. Gilmour⁴, U. Heitmann⁵, H.-W. Hübers^{1.6}, M.M.M. Meier², S.G. Pavlov¹, U. Schade⁷, N.H. Spring⁴ and I. Weber⁵ ¹Inst. of Planet. Res., DLR Berlin, Germany. E-mail: ute.boettger@dlr.de, ²Dept. of Geol., Univ. of Lund, Sweden, ³Photon Sciences, DESY, Hamburg, Germany, ⁴SEAES, Univ. of Manchester, UK, ⁵Inst. f. Planet., WWU Münster, Germany, ⁶Techn. Univ. Berlin, Germany, ⁷Helmholtz-Zentrum Berlin (HZB), Germany.

Introduction: The Hayabusa sample return mission was launched in 2003 by the Japan Aerospace Exploration Agency (JAXA). During this space mission material from the S-type, near-Earth asteroid (25143) Itokawa was sampled and returned to Earth [1]. Seven samples have been provided by JAXA to our consortium [2] in the scope of their 1st International Announcement of Opportunity: RA-QD02 -0035, -0051, -0049-1, -0049-4, -0158, -0187, and -0197. Raman micro-spectroscopy measurements, which allow a contactless non destructive mineralogical investigation, were performed on these Hayabusa samples. Three of the samples (#158, #187, and #197) arrived and remained in a N₂-filled container to avoid Earth atmospheric contamination while the other four were previously examined and exposed to air.

Measurements: Each Raman measurement was carried out with a Witec Alpha 300 Raman microspectrometer. The laser wavelength was 532 nm. The spectral resolution was about 4 cm⁻¹ and for the 10 x objective the spot size on the sample was less than 1 μ m. The measurement time was 120 s and 240 s and the power on the sample was 200 μ W per measurement. Single Raman spectra were collected from the samples to identify minerals. The samples were scanned manually covering the sample surface pointing towards a lens. The samples in the N₂-filled container were measured through a transparent Quartz glass port that replaced the original JAXA top cover.

Results and Summary: The interpretation of the Raman spectra indicates that each sample mainly consists of Mg-rich olivines. This is based on the Gauss fitted olivine doublet observed between 800 cm^{-1} and 900 cm^{-1} . The fitted peaks were compared with two-peak calibration data sets of Kuebler et al. [3]. The intensity ratio of the doublet peaks (DP) was used to identify for sample #197 the relative orientation of the olivine crystals in each measurement location [4]. In some samples (#51, and #197) also pyroxene and plagioclase could be identified. Raman shifts at around 667 cm⁻¹ and 1013 cm⁻¹ are characteristic for pyroxene [4]. Plagioclase has been identified using the peaks around 480 cm⁻¹ and 510 cm⁻¹ by comparison with literature [5]. The results of the Raman measurements on olivine are consistent with LL 5-6 chondrites.

Acknowledgements: We thank Dr. Abe and JAXA for the allocation and efficient delivery of the particles.

References: [1] Abe M. et al. 2012. Abstract #5251. 75th Met. Soc. Meeting. [2] Busemann H. et al. 2013. Abstract #2243. XLIV Lunar & Planetary Science Conference. [3] Kuebler, K. E.et al. 2006. *Geochimica et Cosmochimica Acta* 70: 6201-6222. [4] Ishibashi, H. et al. 2008. *J.Raman Spectrosc*. 39:1653-1659. [5] Wang, A. et al. 2001. *American Mineralogist* 86:790-806. [6] Freeman, J.J. et al. 2008. *The Canadian Mineralogist*, Vol. 46:1477-1500.